Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Allergy, Asthma & Immunology Research ; : 4-23, 2020.
Article in English | WPRIM | ID: wpr-762186

ABSTRACT

MicroRNAs (miRs) are single-stranded RNAs of 18-25 nucleotides. These molecules regulate gene expression at the post-transcriptional level; several of these are differentially expressed in asthma as well as in viral acute respiratory infections (ARIs), the main triggers of acute asthma exacerbations. In recent years, miRs have been studied in order to discover drug targets as well as biomarkers for diagnosis, disease severity and prognosis. We describe recent findings on miR expression and function in asthma and their role in the regulation of viral ARIs, according to cell tissue specificity and asthma severity. By combining the above information, we identify miRs that may be important in virus-induced asthma exacerbations. This is the first attempt to link miR profiles of asthmatic patients and ARI-induced miRs, addressing the question of whether there might be a specific miR deficit in asthmatic subjects that make them more susceptible and/or reactive to infection.


Subject(s)
Humans , Asthma , Biomarkers , Diagnosis , Disease Progression , Gene Expression , Inflammation , MicroRNAs , Nucleotides , Organ Specificity , Prognosis , Respiratory Tract Infections , RNA
2.
Asia Pacific Allergy ; (4): e7-2019.
Article in English | WPRIM | ID: wpr-750167

ABSTRACT

Childhood asthma is one condition within a family of allergic diseases, which includes allergic rhinitis, atopic dermatitis, and food allergy, among others. Omalizumab is an anti-IgE antibody therapy that was approved in Japan for children with asthma and added to the Japanese pediatric asthma guidelines in 2017. This review highlights the Japanese clinical perspectives in pediatric allergic asthma, and consideration for allergic comorbidities, and reflects on omalizumab clinical trials in progress to present comprehensive future opportunities.


Subject(s)
Child , Humans , Asian People , Asthma , Comorbidity , Dermatitis, Atopic , Food Hypersensitivity , Japan , Omalizumab , Rhinitis, Allergic
3.
Allergy, Asthma & Immunology Research ; : 144-154, 2018.
Article in English | WPRIM | ID: wpr-713201

ABSTRACT

PURPOSE: In order to gain an insight into determinants of reported variability in immune responses to respiratory viruses in human bronchial epithelial cells (HBECs) from asthmatics, the responses of HBEC to viral infections were evaluated in HBECs from phenotypically heterogeneous groups of asthmatics and in healthy controls. METHODS: HBECs were obtained during bronchoscopy from 10 patients with asthma (6 atopic and 4 non-atopic) and from healthy controls (n=9) and grown as undifferentiated cultures. HBECs were infected with parainfluenza virus (PIV)-3 (MOI 0.1) and rhinovirus (RV)-1B (MOI 0.1), or treated with medium alone. The cell supernatants were harvested at 8, 24, and 48 hours. IFN-α, CXCL10 (IP-10), and RANTES (CCL5) were analyzed by using Cytometric Bead Array (CBA), and interferon (IFN)-β and IFN-λ1 by ELISA. Gene expression of IFNs, chemokines, and IFN-regulatory factors (IRF-3 and IRF-7) was determined by using quantitative PCR. RESULTS: PIV3 and RV1B infections increased IFN-λ1 mRNA expression in HBECs from asthmatics and healthy controls to a similar extent, and virus-induced IFN-λ1 expression correlated positively with IRF-7 expression. Following PIV3 infection, IP-10 protein release and mRNA expression were significantly higher in asthmatics compared to healthy controls (median 36.03-fold). No differences in the release or expression of RANTES, IFN-λ1 protein and mRNA, or IFN-α and IFN-β mRNA between asthmatics and healthy controls were observed. However, when asthmatics were divided according to their atopic status, HBECs from atopic asthmatics (n=6) generated significantly more IFN-λ1 protein and demonstrated higher IFN-α, IFN-β, and IRF-7 mRNA expressions in response to PIV3 compared to non-atopic asthmatics (n=4) and healthy controls (n=9). In response to RV1B infection, IFN-β mRNA expression was lower (12.39-fold at 24 hours and 19.37-fold at 48 hours) in non-atopic asthmatics compared to atopic asthmatics. CONCLUSIONS: The immune response of HBECs to virus infections may not be deficient in asthmatics, but seems to be modified by atopic status.


Subject(s)
Humans , Asthma , Bronchi , Bronchoscopy , Chemokine CCL5 , Chemokines , Enzyme-Linked Immunosorbent Assay , Epithelial Cells , Gene Expression , Immunity, Innate , Interferons , Paramyxoviridae Infections , Polymerase Chain Reaction , Rhinovirus , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL